Kamis, 16 Desember 2010

GGL INDUKSI

Tahun 1821 Michael Faraday membuktikan bahwa perubahan medan magnet dapat menimbulkan arus listrik (artinya magnet menimbulkan listrik) melalui eksperimen yang sangat sederhana. Sebuah magnet yang digerakkan masuk dan keluar pada kumparan dapat menghasilkan arus listrik pada kumparan itu. Galvanometer merupakan alat yang dapat digunakan untuk mengetahui ada tidaknya arus listrik yang mengalir. Ketika sebuah magnet yang digerakkan masuk dan keluar pada kumparan (seperti kegiatan di atas), jarum galvanometer menyimpang ke kanan dan ke kiri. Bergeraknya jarum galvanometer menunjukkan bahwa magnet yang digerakkan keluar dan masuk pada kumparan menimbulkan arus listrik. Arus listrik bisa terjadi jika pada ujung-ujung kumparan terdapat GGL (gaya gerak listrik). GGL yang terjadi di ujung-ujung kumparan dinamakan GGL induksi. Arus listrik hanya timbul pada saat magnet bergerak. Jika magnet diam di dalam kumparan, di ujung kumparan tidak terjadi arus listrik.

1. Penyebab Terjadinya GGL Induksi

Ketika kutub utara magnet batang digerakkan masuk ke dalam kumparan, jumlah garis gaya-gaya magnet yang terdapat di dalam kumparan bertambah banyak. Bertambahnya jumlah garis- garis gaya ini menimbulkan GGL induksi pada ujung-ujung kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir menggerakkan jarum galvanometer. Arah arus induksi dapat ditentukan dengan cara memerhatikan arah medan magnet yang ditimbulkannya. Pada saat magnet masuk, garis gaya dalam kumparan bertambah. Akibatnya medan magnet hasil arus induksi bersifat mengurangi garis gaya itu. Dengan demikian, ujung kumparan itu merupakan kutub utara sehingga arah arus induksi seperti yang ditunjukkan Gambar 12.1.a (ingat kembali cara menentukan kutub-kutub solenoida).gb121

Ketika kutub utara magnet batang digerakkan keluar dari dalam kumparan, jumlah garis-garis gaya magnet yang terdapat di dalam kumparan berkurang. Berkurangnya jumlah garis-garis gaya ini juga menimbulkan GGL induksi pada ujung-ujung kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir dan menggerakkan jarum galvanometer. Sama halnya ketika magnet batang masuk ke kumparan. pada saat magnet keluar garis gaya dalam kumparan berkurang. Akibatnya medan magnet hasil arus induksi bersifat menambah garis gaya itu. Dengan demikian, ujung, kumparan itu merupakan kutub selatan, sehingga arah arus induksi seperti yang ditunjukkan Gambar 12.1.b. Ketika kutub utara magnet batang diam di dalam kumparan, jumlah garis-garis gaya magnet di dalam kumparan tidak terjadi perubahan (tetap). Karena jumlah garis-garis gaya tetap, maka pada ujung-ujung kumparan tidak terjadi GGL induksi. Akibatnya, tidak terjadi arus listrik dan jarum galvanometer tidak bergerak. Jadi, GGL induksi dapat terjadi pada kedua ujung kumparan jika di dalam kumparan terjadi perubahan jumlah garis-garis gaya magnet (fluks magnetik). GGL yang timbul akibat adanya perubahan jumlah garis-garis gaya magnet dalam kumparan disebut GGL induksi. Arus listrik yang ditimbulkan GGL induksi disebut arus induksi. Peristiwa timbulnya GGL induksi dan arus induksi akibat adanya perubahan jumlah garis-garis gaya magnet disebut induksi elektromagnetik. Coba sebutkan bagaimana cara memperlakukan magnet dan kumparan agar timbul GGL induksi?

2. Faktor yang Memengaruhi Besar GGL Induksi Sebenarnya besar kecil GGL induksi dapat dilihat pada besar kecilnya penyimpangan sudut jarum galvanometer. Jika sudut penyimpangan jarum galvanometer besar, GGL induksi dan arus induksi yang dihasilkan besar. Bagaimanakah cara memperbesar GGL induksi? Ada tiga faktor yang memengaruhi GGL induksi, yaitu : a. kecepatan gerakan magnet atau kecepatan perubahan jumlah garis-garis gaya magnet (fluks magnetik), b. jumlah lilitan, c. medan magnet


B. PENERAPAN INDUKSI ELEKTROMAGNETIK

Pada induksi elektromagnetik terjadi perubahan bentuk energi gerak menjadi energi listrik. Induksi elektromagnetik digunakan pada pembangkit energi listrik. Pembangkit energi listrik yang menerapkan induksi elektromagnetik adalah generator dan dinamo. Di dalam generator dan dinamo terdapat kumparan dan magnet. Kumparan atau magnet yang berputar menyebabkan terjadinya perubahan jumlah garis-garis gaya magnet dalam kumparan. Perubahan tersebut menyebabkan terjadinya GGL induksi pada kumparan. Energi mekanik yang diberikan generator dan dinamo diubah ke dalam bentuk energi gerak rotasi. Hal itu menyebabkan GGL induksi dihasilkan secara terus-menerus dengan pola yang berulang secara periodik



Gaya Lorentz


Kaidah tangan kanan dari gaya Lorentz (F) akibat dari arus listrik I dalam suatu medan magnet B

Gaya Lorentz adalah gaya (dalam bidang fisika) yang ditimbulkan oleh muatan listrik yang bergerak atau oleh arus listrik yang berada dalam suatu medan magnet, B. Arah gaya ini akan mengikuti arah maju skrup yang diputar dari vektor arah gerak muatan listrik (v) ke arah medan magnet, B, seperti yang terlihat dalam rumus berikut:

\mathbf{F} = q (\mathbf{v} \times \mathbf{B})

di mana

F adalah gaya (dalam satuan/unit newton)
B adalah medan magnet (dalam unit tesla)
q adalah muatan listrik (dalam satuan coulomb)
v adalah arah kecepatan muatan (dalam unit meter per detik)
× adalah perkalian silang dari operasi vektor.

Untuk gaya Lorentz yang ditimbulkan oleh arus listrik, I, dalam suatu medan magnet (B), rumusnya akan terlihat sebagai berikut (lihat arah gaya dalam kaidah tangan kanan):

\mathbf{F} = \mathbf{L} I \times \mathbf{B} \,

di mana

F = gaya yang diukur dalam unit satuan newton
I = arus listrik dalam ampere
B = medan magnet dalam satuan tesla
\times = perkalian silang vektor, dan
L = panjang kawat listrik yang dialiri listrik dalam satuan meter.
MEDAN MAGNET.

Medan magnet adalah ruangan di sekitar kutub magnet, yang gaya tarik/tolaknya masih dirasakan oleh magnet lain.

Kuat Medan ( H ) = ITENSITY.

Kuat medan magnet di suatu titik di dalam medan magnet ialah besar gaya pada suatu satuan kuat kutub di titik itu di dalam medan magnet m adalah kuat kutub yang menimbulkan medan magnet dalam Ampere-meter. R jarak dari kutub magnet sampai titik yang bersangkutan dalam meter. dan H = kuat medan titik itu dalam : clip_image017 atau dalam clip_image019

Garis Gaya.

Garis gaya adalah : Lintasan kutub Utara dalam medan magnet atau garis yang bentuknya demikian hingga kuat medan di tiap titik dinyatakan oleh garis singgungnya.

Sejalan dengan faham ini, garis-garis gaya keluar dari kutub-kutub dan masuk ke dalam kutub Selatan. Untuk membuat pola garis-garis gaya dapat dengan jalan menaburkan serbuk besi disekitar sebuah magnet.

Gambar pola garis-garis gaya.

clip_image020

Rapat Garis-Garis Gaya ( FLUX DENSITY ) = B

Definisi : Jumlah garis gaya tiap satuan luas yang tegak lurus kuat medan.

clip_image022

Kuat medan magnet di suatu titik sebanding dengan rapat garis-garis gaya dan berbanding terbalik dengan permeabilitasnya.

clip_image024

clip_image026

B = rapat garis-garis gaya.

clip_image011[4] = Permeabilitas zat itu.

H = Kuat medan magnet.

catatan : rapat garis-garis gaya menyatakan kebesaran induksi magnetik.

Medan magnet yang rapat garis-garis gayanya sama disebut : medan magnet serba sama ( homogen )

clip_image028

Bila rapat garis-garis gaya dalam medan yang serba sama B, maka banyaknya garis-garis gaya ( clip_image030clip_image009[1] ) yang menembus bidang seluar A m2 dan mengapit sudut clip_image032 dengan kuat medan adalah : clip_image030[1] = B.A Sinclip_image032[1] Satuanya : Weber.

Polarisasi Cahaya

Polarisasi adalah peristiwa penyerapan arah bidang getar dari gelombang. Gejala polarisasi hanya dapat dialami oleh gelombang transversal saja, sedangkan gelombang longitudinal tidak mengalami gejala polarisasi. Fakta bahwa cahaya dapat mengalami polarisasi menunjukkan bahwa cahaya merupakan gelombang transversal.

Pada umumnya, gelombang cahaya mempunyai banyak arah getar. Suatu gelombang yang mempunyai banyak arah getar disebut gelombang tak terpolarisasi, sedangkangelombang yang memilki satu arah getar disebut gelombang terpolarisasi.

Gejala polarisasi dapat digambarkan dengan gelombang yang terjadi pada tali yang dilewatkan pada celah. Apabila tali digetarkan searah dengan celah maka gelombang pada tali dapat melewati celah tersebut. Sebaliknya jika tali digetarkan dengan arah tegak lurus celah maka gelombang pada tali tidak bisa melewati celah tersebut.

Sinar alami seperti sinar Matahari pada umumnya adalah sinar yang tak terpolarisasi. Sinar tak terpolarisasi dilambangkan sedangkan sinar yang terpolarisasi dilambangkan atau . Cahaya dapat mengalami polarisasi dengan berbagai cara, antara lain karena peristiwa pemantulan, pembiasan, bias kembar, absorbsi selektif, dan hamburan.
1. Polarisasi karena Pemantulan
Cahaya yang datang ke cermin dengan sudut datang sebesar 57o, maka sinar yang terpantul akan merupakan cahaya yang terpolarisasi. Cahaya yang berasal dari cermin I adalah cahaya terpolarisasi akan dipantulkan ke cermin.

Apabila cermin II diputar sehingga arah bidang getar antara cermin I dan cermin II saling tegak lurus, maka tidak akan ada cahaya yang dipantulkan oleh cermin II. Peristiwa ini menunjukkan terjadinya peristiwa polarisasi. Cermin I disebut polarisator, sedangkan cermin II disebut analisator. Polarisator akan menyebabkan sinar yang tak terpolarisasi menjadi sinar yang terpolarisasi, sedangkan

2. Polarisasi karena Pemantulan dan Pembiasan
Berdasarkan hasil eksperimen yang dilakukan para ilmuwan Fisika menunjukkan bahwa polarisasi karena pemantulan dan pembiasan dapat terjadi apabila cahaya yang dipantulkan dengan cahaya yang dibiaskan saling tegak lurus atau membentuk sudut 90o.

Di mana cahaya yang dipantulkan merupakan cahaya yang terpolarisasi sempurna, sedangkan sinar bias merupakan sinar terpolarisasi sebagian. Sudut datang sinar yang dapat menimbulkan cahaya yang dipantulkan dengan cahaya yang dibiaskan merupakan sinar yang terpolarisasi.

Sudut datang seperti ini dinamakan sudut polarisasi (ip) atau sudut Brewster. Pada saat sinar pantul dan sinar bias saling tegak lurus (membentuk sudut 90o) akan berlaku ketentuan bahwa : iw + r = 90o atau r = 90o - i

3. Polarisasi karena Bias Kembar (Pembiasan Ganda)
Polarisasi karena bias kembar dapat terjadi apabila cahaya melewati suatu bahan yang mempunyai indeks bias ganda atau lebih dari satu, misalnya pada kristal kalsit.

Cahaya yang lurus disebut cahaya biasa, yang memenuhi hukum Snellius dan cahaya ini tidak terpolarisasi. Sedangkan cahaya yang dibelokkan disebut cahaya istimewa karena tidak memenuhi hukum Snellius dan cahaya ini adalah cahaya yang terpolarisasi.

4. Polarisasi karena Absorbsi
Selektif Polaroid adalah suatu bahan yang dapat menyerap arah bidang getar gelombang cahaya dan hanya melewatkan salah satu bidang getar. Seberkas sinar yang telah melewati polaroid hanya akan memiliki satu bidang getar saja sehingga sinar yang telah melewati polaroid adalah sinar yang terpolarisasi.

Peristiwa polarisasi ini disebut polarisasi karena absorbsi selektif. Polaroid banyak digunakan dalam kehidupan sehari-hari, antara lain untuk pelindung pada kacamata dari sinar matahari (kacamata sun glasses) dan polaroid untuk kamera.

5. Polarisasi karena Hamburan
Polarisasi cahaya karena peristiwa hamburan dapat terjadi pada peristiwa terhamburnya cahaya matahari oleh partikel-partikel debu di atmosfer yang menyelubungi Bumi. Cahaya matahari yang terhambur oleh partikel debu dapat terpolarisasi. Itulah sebabnya pada hari yang cerah langit kelihatan berwarna biru. Hal itu disebabkan oleh warna cahaya biru dihamburkan paling efektif dibandingkan dengan cahaya-cahaya warna yang lainnya.

6. Pemutaran Bidang Polarisasi
Seberkas cahaya tak terpolarisasi melewati sebuah polarisator sehingga cahaya yang diteruskan terpolarisasi. Cahaya terpolarisasi melewati zat optik aktif, misalnya larutan gula pasir, maka arah polarisasinya dapat berputar. Besarnya sudut perubahan arah polarisasi cahaya

DIFRAKSI

Difraksi adalah penyebaran gelombang, contohnya cahaya, karena adanya halangan. Semakin kecil halangan, penyebaran gelombang semakin besar. Hal ini bisa diterangkan oleh prinsip Huygens. Pada animasi pada gambar sebelah kanan atas terlihat adanya pola gelap dan terang, hal itu disebabkan wavelet-wavelet baru yang terbentuk di dalam celah sempit tersebut saling berinterferensi satu sama lain.

Untuk menganalisa atau mensimulasikan pola-pola tersebut, dapat digunakan Transformasi Fourier atau disebut juga dengan Fourier Optik.

Pada tahun 1690 hingga teori partikel Newton mendapatkan banyak sanggahan. Fresnel mendefinisikan difraksi dari eksperimen celah ganda Young sebagai interferensi gelombang[12] dengan persamaan:
mλ = dsinθ

dimana d adalah jarak antara dua sumber muka gelombang, θ adalah sudut yang dibentuk antara fraksi muka gelombang urutan ke-m dengan sumbu normal muka gelombang fraksi mula-mula yang mempunyai urutan maksimum m = 0.[13]. Difraksi Fresnel kemudian dikenal sebagai near-field diffraction, yaitu difraksi yang terjadi dengan nilai m relatif kecil.

INTERFERENSI

Agar mendapatkan pola interferensi cahaya pada layar maka harus digunakan dua sumber cahaya yang koheren (cahaya dengan beda fase tetap).

Percobaan Young menggunakan satu sumber cahaya tetapi dipisahkan menjadi dua bagian yang koheren, sedangkan percobaan Fresnel menggunakan dua sumber koheren, sehingga pada layar terjadi pola-pola terang (interferensi koostruktif = maksimum) dan gelap (interferensi destruktif = minimum).

Rumus percobaan Young dan Fresnel untuk celah ganda (dua celah) adalah sama, yaitu:

p . d = (2m) 1/2 l terang (maks)
..l (2m - 1) 1/2 l gelap (min)

p = jarak terang/gelap ke pusat
d = jarak dua celah terdekat
l = jarak sumber-layar
m = orde = 1,2,3, .........
l = panjang gelombang cahaya

Jarak antara 2 garis yang berdekatan (terang ke terang atau gelap ke gelap) adalah l, sehingga

p . d
l
..
= l

Gbr. Difraksi dan Interferensi

Untuk difraksi dan interferensi pada celah tunggal (satu celah) rumusnya menjadi:

p . d = (2m - 1) 1/2 l terang (maks)
..l (2m) 1/2 l gelap (min)


Dispersi

adalah peristiwa penguraian cahaya polikromarik (putih) menjadi cahaya-cahaya monokromatik (me, ji, ku, hi, bi, ni, u) pada prisma.

Peristiwa dispersi ini terjadi karena perbedaan indeks bias tiap warna cahaya. Cahaya berwarna merah mengalami deviasi terkecil sedangkan warna ungu mengalami deviasi terbesar.

Sudut dispersi

F = du - dm
F = (nu - nm)b

dm = sudut deviasi merah
du = sudut deviasi ungu
nu = indeks bias untuk warna ungu
nm = indeks bias untuk warna merah

Catatan :

Untuk menghilangkan dispersi antara sinar ungu dan sinar merah kita gunakan susunan Prisma Akhromatik.

Ftot = F kerona - Fflinta = 0

Untuk menghilangkan deviasi suatu warna, misalnya hijau, kita gunakan susunan prisma pandang lurus.

Dtot = Dkerona - Dflinta = 0

DEVIASI

Dalam statistika dan probabilitas, simpangan baku atau deviasi standar adalah ukuran sebaran statistik yang paling lazim. Singkatnya, ia mengukur bagaimana nilai-nilai data tersebar.

Simpangan baku didefinisikan sebagai akar kuadrat varians. Simpangan baku merupakan bilangan tak-negatif, dan memiliki satuan yang sama dengan data. Misalnya jika suatu data diukur dalam satuan meter, maka simpangan baku juga diukur dalam meter pula.

Istilah simpangan baku pertama kali diperkenakan oleh Karl Pearson pada tahun 1894, dalam bukunya On the dissection of asymmetrical frequency curves.

3.1 Sifat-Sifat Dasar Gelombang Bunyi
Salah satu
gelombang mekanis yang ada dalam kehidupan kita sehari-hari adalah gelombang
bunyi. Bunyi ditimbulkan oleh sebuah sumber bunyi. Sumber bunyi adalah sesuatu
yang bergetar.Bunyi yang ditimbulkan oleh sumber bunyi tersebut akan merambat dalam ruang dari sumber kesegala arah. Peralatan musik seperti gitar dan biola menggunakan dawai
sebagai alat getar.
Benarkah bunyi hanya dapat merambat melalui medium? Dan bagaimanakah sifat-sifat dasar
gelombang bunyi?


a. Gelombang bunyi memerlukan medium dalam perambatannya
Karena gelombang bunyi merupakan gelombang mekanik, maka dalam perambatannya bunyi
memerlukan medium. Hal ini dapat dibuktikan saat dua orang astronout berada
jauh dari bumi dan keadaan dalam pesawat dibuat hampa udara, astronout tersebut
tidak dapat bercakap-cakap langsung tetapi menggunakan alat komunikasi seperti
telepon. Meskipun dua orang astronout tersebut berada dalam satu pesawat.

b. Gelombang bunyi mengalami pemantulan (refleksi)
Salah satu sifat gelombang adalah dapat dipantulkan sehingga gelombang bunyi juga dapat
mengalami hal ini. Hukum pemantulan gelombang: sudut datang = sudut pantul juga
berlaku pada gelombang bunyi. Hal ini dapat dibuktikan bahwa pemantulan bunyi
dalam ruang tertutup dapat menimbulkan gaung.
Yaitu sebagian bunyi pantul bersamaan dengan bunyi asli sehingga bunyi asli
terdengar tidak jelas. Untuk menghindari terjadinya gaung maka dalam bioskop,
studio radio dan televisi, dan gedung konser musik dindingnya dilapisi zat
peredam suara yang biasanya terbuat dari kain wol, kapas, gelas, karet, atau
besi.

c. Gelombang bunyi mengalami pembiasan (refraksi)
Salah satu
sifat gelombang adalah mengalami pembiasan. Peristiwa pembiasan dalam kehidupan
sehari-hari misalnya pada malam hari bunyi petir terdengar lebih keras daripada
siang hari. Hal ini disebabkan karena pada pada siang hari udara lapisan atas
lebih dingin daripada dilapisan bawah. Karena cepat rambat bunyi pada suhu
dingin lebih kecil daripada suhu panas maka kecepatan bunyi dilapisan udara
atas lebih kecil daripada dilapisan bawah, yang berakibat medium lapisan atas
lebih rapat dari medium lapisan bawah. Hal yang sebaliknya terjadi pada malam
hari. Jadi pada siang hari bunyi petir merambat dari lapisan udara atas
kelapisan udara bawah. Untuk lebih jelasnya hal ini dapat kalian lihat pada
gambar dibawah.

d. Gelombang bunyi mengalami pelenturan (difraksi)
Gelombang bunyi sangat mudah mengalami difraksi karena gelombang bunyi diudara memiliki panjang
gelombang dalam rentang sentimeter sampai beberapa meter. Seperti yang kita
ketahui, bahwa gelombang yang lebih panjang akan lebih mudah didifraksikan.
Peristiwa difraksi terjadi misalnya saat kita dapat mendengar suara mesin mobil
ditikungan jalan walaupun kita belum melihat mobil tersebut karena terhalang
oleh bangunan tinggi dipinggir tikungan.

e. Gelombang bunyi mengalami perpaduan (interferensi)
Gelombang bunyi mengalami gejala perpaduan gelombang atau interferensi, yang dibedakan
menjadi dua yaitu interferensi
konstruktif
atau penguatan bunyi dan interferensi
destruktif
atau pelemahan bunyi. Misalnya waktu kita berada diantara dua
buah loud-speaker dengan frekuensi dan amplitudo yang sama atau hampir sama
maka kita akan mendengar bunyi yang keras dan lemah secara bergantian

Penerapan
dari sifat-sifat gelombang bunyi diantaranya:
1. Dua astronout tidak dapat bercakap-cakap langsung
tetapi menggunakan alat komunikasi seperti telepon karena keadaan dalam pesawat
dibuat hampa udara.

2. Terjadinya gaung,
yaitu sebagian bunyi pantul bersamaan dengan bunyi asli sehingga bunyi asli
terdengar tidak jelas.

3. Pada malam hari bunyi petir terdengar lebih keras daripada
siang hari.

4. Kita dapat mendengar bunyi ditikungan meskipun kita
belum melihat mobil tersebut karena terhalang tembok yang tinggi.


Rangkuman
1. Gelombang bunyi merupakan gelombang mekanis.
2. Bunyi ditimbulkan oleh sumber bunyi.
3. Sifat-sifat dasar gelombang bunyi:
a. Gelombang bunyi memerlukan medium.
b. Gelombang bunyi mengalami pemantulan
c. Gelombang bunyi mengalami pembiasan.
d. Gelombang bunyi mengalami pelenturan.
e. Gelombang bunyi mengalami perpaduan.

a. Gelombang Berjalan

Amplitudo pada tali yang digetarkan terus menerus akan selalu tetap, oleh karenanya gelombang yang memiliki amplitudo yang tetap setiap saat disebut gelombang berjalan.
Misalkan seutas tali kita getarkan ke atas dan ke bawah berulang-ulang seperti pada Gambar disamping ini. Titik P berjarak x dart titik 0 (sumber getar), Ketika titik 0 bergetar maka getaran tersebut merambat hingga ke titik P,Waktu yang diperlukan oleh gelombang untuk merambat dari titik o ke titik P adalah x / v dengan demikian bila titik 0 telah bergetar selama t detik maka titik p telah bergetar selama tP dengan


tp= t- x/v


Berdasarkan uraian diatas maka akan didapatkan persamaan simpangan gelombang, sebagai berikut:
y=A sin⁡ 2π/T t


gambar:gel berjalan pada tali.jpg
Persamaan simpangan di titik P dapat diperoleh dengan mengganti nilai t dengan tp sehingga kita dapatkan hubungan berikut.

yp = A sin⁡ 2π/T (t- x/v)


A = amplitudo gelombang (m)
T = periode gelombang (s)
t = lamanya titik 0 (sumber getar) bergetar (s)
x = jarak titik P dari sumber getar (m)
v = cepat rambat gelombang (m/s)
yp= simpangan di titik P (m)

dalam hal ini gelombang memiliki dua kemungkinan dalam arah rambatannya, oleh karenanya perlu diperhatikan langkah sebagai berikut:

  • Apabila gelombang merambat ke kanan dan titik asal 0 bergetar ke atas maka persamaan simpangan titik P yang digunakan adalah:

yp = A sin⁡2π/T (t- x/v)


  • Apabila gelombang merambat ke kiri dan titik asal 0 bergetar ke bawah maka persamaan simpangan titik P yang digunakan adalah:

yp = - A sin⁡ 2π/T (t- x/v)

'

Fase di definisikan sebagai perbandingan antara waktu sesaat untuk meninggalkan titik keseimbang (titik 0) dan periode. Dengan demikian fase gelombang dititik P dapat ditulis sebagai berikut:

φ= tp/T
= (t- x/v)/T φp = t/T - x/λ
= t/T- x/vT


Sehingga dihasilkan :
Sedangkan untuk mengukur besarnya sudut fase di titik P dapat dituliskan sebagai berikut:

θp = 2π φ_p
=2π (t/T- x/λ)

Beda fase antara dua titik yang berjarak X2 dan X1 dari sumber getar dapat dituliskan sebagai berikut:

Δφ = ( x2 - x1)/λ
Δφ = ∆x/λ

Nilai kecepatan dan percepatan gelombang di suatu titik dapat diketahui dengan menurunkan persamaan keduanya, sebagai berikut:

vp = 2π/T A cos⁡ 2π/T (t- x/v)

ap= - (4π2)/T2 A cos⁡ 2π/T (t- x/v)


Keterangan:
vp = kecepatan partikel di titik p (m/s)
ap = percepatan partikel di titik p (m/s2)


'
Contoh soal:

Suatu gelombang berjalan memiliki persamaan y = 10 sin (0,8πt - 0,5;t) dengan y dalam cm dan t dalam detik. Tentukanlah kecepatan dan percepatan maksimumnya!
Pembahasan:
y=10sin⁡(0,8 πt-0,5 πx)
v = dy/dt
v=(10)(0,8 π) cos⁡ (0,8 πt-0,5 πx)
nilai v maksimum bila cos⁡ (0,8 πt-0,5 πx)=1

b. Gelombang Stasioner

Adalah gelombang yang memiliki amplitudo yang berubah – ubah antara nol sampai nilai maksimum tertentu.
Gelombang stasioner dibagi menjadi dua, yaitu gelombang stasioner akibat pemantulan pada ujung terikat dan gelombang stasioner pada ujung bebas.

gambar:a.jpg gambar:b.jpg


Seutas tali yang panjangnya l kita ikat ujungnya pada satu tiang sementara ujung lainnya kita biarkan, setela itu kita goyang ujung yang bebas itu keatas dan kebawah berulang – ulang. Saat tali di gerakkan maka gelombang akan merambat dari ujung yang bebas menuju ujung yang terikat, gelombang ini disebut sebagai gelombang dating. Ketika gelombang dating tiba diujung yang terikat maka gelombang ini akan dipantulkan sehingga terjadi interferensi gelombang.
Untuk menghitung waktu yang diperlukan gelombang untuk merambat dari titik 0 ke titik P adalah (l- x)/v . sementara itu waktu yang diperlukan gelombang untuk merambat dari titik 0 menuju titik P setelah gelombang mengalami pemantulan adalah(l+x)/v , kita dapat mengambil persamaan dari gelombang dating dan gelombang pantul sebagai berikut:


y1= A sin 2π/T (t- (l-x)/v) untuk gelombang datang,

y2= A sin 2π/T (t- (l+x)/v+ 1800) untuk gelombang pantul

Keterangan:
a. Gambar pemantulan gelombang pada ujung tali yang terikat.
b. Gambar pemantulan gelombang pada ujung tali yang dapat bergerak bebas.


sehingga untuk hasil interferensi gelombang datang dan gelombang pantul di titik P yang berjarak x dari ujung terikat adalah sebagai berikut:


y = y1+ y2
=A sin⁡ 2π (t/T- (l-x)/λ)+ A sin⁡2π(t/T- (1+x)/λ+ 1800 )
Dengan menggunakan aturan sinus maka penyederhanaan rumus menjadi:
sin⁡ A + sin⁡ B = 2 sin⁡ 1/2 (A+B) - cos⁡1/2 (A-B)


Menjadi:
y= 2 A sin⁡ (2π x/λ ) cos ⁡2π (t/T - l/λ)
y= 2 A sin⁡ kx cos⁡ (2π/T t - 2πl/λ)

Rumus interferensi

y= 2 A sin⁡ kx cos⁡ (ωt- 2πl/λ)

Keterangan :
A = amplitude gelombang datang atau pantul (m)
k = 2π/λ
ω = 2π/T (rad/s)
l = panjang tali (m)
x = letak titik terjadinya interferensi dari ujung terikat (m)
λ = panjang gelombang (m)
t = waktu sesaat (s)
Ap = besar amplitude gelombang stasioner (AP)
Ap = 2 A sin kx
Jika kita perhatikan gambar pemantulan gelombang diatas , gelombang yang terbentuk adalah gelombang transversal yang memiliki bagian – bagian diantaranya perut dan simpul gelombang. Perut gelombang terjadi saat amplitudonya maksimum sedangkan simpul gelombang terjadi saat amplitudonya minimum. Dengan demikian kita akan dapat mencari letak titik yang merupakan tempat terjadinya perut atau simpul gelombang.

Tempat simpul (S) dari ujung pemantulan
S=0,1/2 λ,λ,3/2 λ,2λ,dan seterusnya
=n (1/2 λ),dengan n=0,1,2,3,….

Tempat perut (P) dari ujung pemantulan
P= 1/4 λ,3/4 λ,5/4 λ,7/4 λ,dan seterusnya
=(2n-1)[1/4 λ],dengan n=1,2,3,….

Superposisi gelombang

Jika ada dua gelombang yang merambat pada medium yang sama, gelombang-gelombang tersebut akan dating di suatu titik pada saat yang sama sehingga terjadilah superposisi gelombang . Artinya, simpangan gelombang – gelombang tersebut disetiap titik dapat dijumlahkan sehingga menghasilkan sebuah gelombang baru.
Persamaan superposisi dua gelombang tersebut dapat diturunkan sebagai berikut:
y1 = A sin⁡ ωt ; y2 = A sin⁡ (ωt+ ∆θ)
Kedua gelombang tersebut memiliki perbedaan sudut fase sebesar Δθ
Persamaan simpangan gelombang hasil superposisi kedua gelombang tersebut adalah:

y = 2 A sin⁡ (ωt+ ∆θ/2) cos⁡(∆θ/2)


Dengan 2A cos (∆θ/2) disebut sebagai amplitude gelombang hasil superposisi.
Dengan 2A cos (∆θ/2) disebut sebagai amplitude gelombang hasil superposisi.


Gelombang Stasioner Pada Ujung Bebas

Pada gelombang stasioner pada ujung bebas gelombang pantul tidak mengalami pembalikan fase. Persamaan gelombang di titik P dapat dituliskan seperti berikut:
y1=A sin⁡〖2π/T 〗 (t- (l-x)/v) untuk gelombang datang

y2=A sin⁡〖2π/T 〗 (t- (l+x)/v) untuk gelombang pantul


y = y1 + y2
= A sin⁡ 2π/T (t- (l-x)/v) + A sin⁡ 2π/T (t- (l+x)/v)
y = 2 A cos⁡ kx sin⁡2π(t/T- 1/λ)


Rumus interferensi antara gelombang datang dan gelombang pantul pada ujung bebas, adalah:

y=2 A cos⁡ 2π (x/λ) sin⁡2π(t/T- l/λ)

Dengan:
As=2A cos⁡2π(x/λ) disebut sebagai amplitude superposisi gelombang pada pemantulan ujung tali bebas.


Ap = 2 A cos kx adalah amplitudo gelombang stasioner.
1) Perut gelombang terjadi saat amplitudonya maksimum, yang secara matematis dapat ditulis sebagai berikut:

Ap maksimum saat cos⁡〖(2π x)/( λ)〗= ±1 sehingga
x= (2n) 1/4 λ,dengan n = 0,1,2,3,…….

.

2) Simpul gelombang terjadi saat amplitudo gelombang minimum, ditulis sebagai berikut:

Ap minimum saat cos⁡〖(2π x)/( λ)〗=0 sehingga
x= (2n +1) 1/4 λ,dengan n = 0,1,2,3,……..


Gelombang stasioner pada ujung terikat

gambar:stasioner ujung terikat.jpg

Persamaan gelombang datang dan gelombang pantul dapat ditulis sebagai berikut:

y1= A sin⁡2π (t/T- (l-x)/λ) untuk gelombang datang

y2= A sin⁡2π (t/T- (l+x)/λ) untuk gelombang pantul

'

Superposisi gelombang datang dan gelombang pantul di titik q akan menjadi:''''
y = y1 + y2
y=A sin⁡ 2π (t/T- (l-x)/λ) - A sin⁡2π(t/(T ) – (l+x)/λ)


Dengan menggunakan aturan pengurangan sinus,
sin⁡α - sin⁡β = 2 sin⁡ 1/2 (α-β) cos⁡1/2 (α+β)


Persamaan gelombang superposisinya menjadi
y = 2 A sin⁡ 2π(x/λ) cos⁡2π (t/T- l/λ)

Amplitudo superposisi gelombangnya adalah:

As = 2A sin⁡2π(x/λ)

Dengan As adalah amplitudo gelombang superposisi pada pemantulan ujung terikat.

1) Perut gelombang terjadi saat amplitudonya maksimum,

karenanya dapat ditentukan dengan rumus sebagai berikut:
Ap=2 A sin⁡ 2π/λ x
Ap maksimum terjadi saat sin⁡ 2π/λ x= ±1 sehingga
x= (2n+1) 1/4 λ,dengan n=0,1,2,3…….


2) Simpul gelombang terjadi saat amplitudonya minimum,

yang dapat ditulis sebagai berikut:
Ap=2 A sin⁡(2π/λ) x
Ap minimum terjadi saat sin ⁡2π/λ x = 0 sehingga
x = (2n) 1/4 λ,dengan n=0,1,2,3,…..


Contoh soal :
Seutas tali panjangnya 5 m dengan ujung ikatannya dapat bergerak dan ujung lainnya digetarkan dengan frekuensi 8 Hz sehingga gelombang merambat dengan kelajuan 3 ms-1. Jika diketahui amplitude gelombang 10 cm, tentukanlah:
Persamaan simpangan superposisi gelombang di titik P yang berjarak 1 meter dari ujung pemantulan.
Amplitude superposisi gelombang di titik P; dan
Letak perut gelombang diukur dari ujung pemantulan.


Penyelesaian:
Diketahui : l = 5 m; f= 8 Hz; v = 3 ms-1; A=10cm = 0,1 m;
λ= v/(f )= 3/(8 ) m,dan T=1/f=1/8 s
a. Persamaan simpangan di titik P, satu meter dari ujung pemantulan.
y = 2 A cos⁡ 2π(x/λ) sin⁡ 2π (t/T-l/λ)
= 2(0,1) cos⁡2π(1/(3/8)) sin⁡2π(t/(1/8)- 5/(3/8))
= 0,2cos⁡〖16π/3〗 sin(16 πt-80π/3)meter


b. Amplitudo superposisi gelombang di titik P ( x = 1m).
As = 2 A cos⁡ 2π (x/λ) = 2 (0,1) cos⁡2π(1/(3/8))
= 0,2cos⁡ (16π/3) = 0,2 cos⁡(4 4/3 π)
= 0,2cos⁡(4/3 π) = 0,2 cos⁡ 2400 = 0,2(-1/2) = -0.1 m
tanda (–)menunjukkan di titik P simpangannya ke bawah.

c. Letak perut gelombang dari ujung pemantulan.
x= (2n) 1/4 λ,dengan n=0,1,2,3…
x= 3/32 m,x=3/16 m,x=3/8m, …..



Gerak harmonik sederhana



Contoh gerak harmonik sederhana

Gerak harmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan[1].


Jenis, Contoh, dan Besaran Fisika pada Gerak Harmonik Sederhana

Jenis Gerak Harmonik Sederhana

Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu[1] :

  • Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U, gerak horizontal / vertikal dari pegas, dan sebagainya.
  • Gerak Harmonik Sederhana (GHS) Angular, misalnya gerak bandul/ bandul fisis, osilasi ayunan torsi, dan sebagainya.

[sunting] Beberapa Contoh Gerak Harmonik Sederhana

  • Gerak harmonik pada bandul
Gerak harmonik pada bandul

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya, maka benda akan dian di titik keseimbangan B[2]. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A[2]. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana[2].