Rabu, 04 November 2009

GERAK TRANSLASI

HUBUNGAN GERAK TRANSLASI DENGAN GERAK ROTASI
Gerakan Rotasi
Gerak Rotasi
Hubungannya
Pergeseran Linier
S
Pergeseran Sudut
q
S = q . R
Kecepatan Linier
v = ds/dt
Kecepatan Sudut
w = dq/dt
v = w . R
Percepatan Linier
a = dv/dt
Percepatan Sudut
a = dw/dt
a = a . R
Gaya
F = m.a
Momen Gaya (Torsi)
t = I a
t = F . R
Energi Kinetik
Ek = ½ m v2
Energi Kinetik
Ek = ½ I w2
-
Daya
P = F.v
Daya
P = t w
-
Momentum Linier
P = m.v
Momentum Sudut
L = P R
L = P R
Usaha
W = F.s
Usaha
W = t q
-

keterangan yg perlu diperhatikan

W= usaha

w= kecepatan sudut

w2= maksudnya dikuadratkan

GLB DAN GLBB

GLB
diartikan sebagai gerak benda dalam lintasan lurus dengan percepatan tetap. Yang dimaksudkan dengan percepatan tetap adalah perubahan kecepatan gerak benda yang berlangsung secara tetap dari waktu ke waktu. Mula-mula dari keadaan diam, benda mulai bergerak, semakin lama semakin cepat dan kecepatan gerak benda tersebut berubah secara teratur. Perubahan kecepatan bisa berarti tejadi pertambahan kecepatan atau pengurangan kecepatan. Pengurangan kecepatan terjadi apabila benda akan berhenti. dalam hal ini benda mengalami perlambatan tetap. Pada pembahasan ini kita tidak menggunakan istilah perlambatan untuk benda yang mengalami pengurangan kecepatan secara teratur. Kita tetap menamakannya percepatan, hanya nilainya negatif. Jadi perlambatan sama dengan percepatan yang bernilai negatif.

GLBB

Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu

Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)

Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….

Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….

Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.

Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.

Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan/rumus percepatan rata-rata, di mana

t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi : benda belum bergerak maka kita bisa mengatakan

KOORDINAT POLAR

Koordinat Polar
Koordinat Polar prinsipnya juga sama seperti koordinat kartesius yaitu bertujuan untuk menentukan posisi suatu titik. Namun pada polar koordinat penentuan titik tersebut di dasarkan pada suatu komponen jarak dan sudut. Jarak dan sudut pengukuran di buat relatif terhadap titik asal. Dalam ilustrasi gambar di samping, diperlihatkan metode penulisan koordinat polar. 66.2<60 dimana angka pertama merupakan jarak (dalam satuan unit) dan yang kedua adalah sudut. Dalam autocad, untuk nilai sudut positif akan berlawanan arah jarum jam (lihat warna hijau), dan untuk nilai sudut negatif akan searah jarum jam (warna merah).

KOORDINAT CARTECIUS

angsung ke: navigasi, cari
Gambar 1 - Sistem koordinat Kartesius. Terdapat empat titik yang ditandai: (2,3) titik hijau, (-3,1) titik merah, (-1.5,-2.5) titik biru, dan (0,0), titik asal, yang berwarna ungu.

Dalam matematika, Sistem koordinat Kartesius digunakan untuk menentukan tiap titikbidang dengan menggunakan dua bilangan yang biasa disebut koordinat x dan koordinat y dari titik tersebut. dalam

Untuk mendefinisikan koordinat diperlukan dua garis berarah yang tegak lurus satu sama lain (sumbu x dan sumbu y), dan panjang unit, yang dibuat tanda-tanda pada kedua sumbu tersebut (lihat Gambar 1).

Sistem koordinat Kartesius dapat pula digunakan pada dimensi-dimensi yang lebih tinggi, seperti 3 dimensi, dengan menggunakan tiga sumbu (sumbu x, y, dan z).

Gambar 2 - Sistem koordinat Kartesius disertai lingkaran merah yang berjari-jari 2 yang berpusat pada titik asal (0,0). Persamaan lingkaran merah ini adalah x² + y² = 4.

Dengan menggunakan sistem koordinat Kartesius, bentuk-bentuk geometri seperti kurvapersamaan aljabar. Sebagai contoh, lingkaran yang berjari-jari 2 dapat diekspresikan dengan persamaan x² + y² = 4 (lihat Gambar 2). dapat diekspresikan dengan

Istilah Kartesius digunakan untuk mengenang ahli matematika sekaligus filsuf dari PerancisDescartes, yang perannya besar dalam menggabungkan aljabar dan geometri (Cartesius adalah latinisasi untuk Descartes). Hasil kerjanya sangat berpengaruh dalam perkembangan geometri analitik, kalkulus, dan kartografi.

Ide dasar sistem ini dikembangkan pada tahun 1637 dalam dua tulisan karya Descartes. Pada bagian kedua dari tulisannya Discourse on Method, ia memperkenalkan ide baru untuk menggambarkan posisi titik atau obyek pada sebuah permukaan, dengan mengggunakan dua sumbu yang bertegak lurus antar satu dengan yang lain. Dalam tulisannya yang lain, La Géométrie, ia memperdalam konsep-konsep yang telah dikembangkannya.

Lihat koordinat (matematika) untuk sistem-sistem koordinat lain seperti sistem koordinat polar.

GAYA GESEKAN

Gaya gesek adalah gaya yang berarah melawan gerak benda atau arah kecenderungan benda akan bergerak. Gaya gesek muncul apabila dua buah benda bersentuhan. Benda-benda yang dimaksud di sini tidak harus berbentuk padat, melainkan dapat pula berbentuk cair, ataupun gas. Gaya gesek antara dua buah benda padat misalnya adalah gaya gesek statis dan kinetis, sedangkan gaya antara benda padat dan cairan serta gas adalah gaya Stokes.

Secara umum gaya gesek dapat dituliskan sebagai suatu ekspansi deret, yaitu

f = - \mu_{s,k} N \frac{\vec{v}}{|\vec{v}|} - b v \frac{\vec{v}}{|\vec{v}|} - c v^2 \frac{\vec{v}}{|\vec{v}|} - ..,

di mana suku pertama adalah gaya gesek yang dikenal sebagai gaya gesek statis dan kinetis, sedangkan suku kedua dan ketiga adalah gaya gesek pada benda dalam fluida.

Gaya gesek dapat merugikan atau bermanfaat. Panas pada poros yang berputar, engsel pintu yang berderit, dan sepatu yang aus adalah contoh kerugian yang disebabkan oleh gaya gesek. Akan tetapi tanpa gaya gesek manusia tidak dapat berpindah tempat karena gerakan kakinya hanya akan menggelincir di atas lantai. Tanpa adanya gaya gesek antara ban mobil dengan jalan, mobil hanya akan slip dan tidak membuat mobil dapat bergerak. Tanpa adanya gaya gesek juga tidak dapat tercipta parasut.

Hukum Pertama

Figure 2: Hukum Kepler pertama menempatkan Matahari di satu titik fokus edaran elips.
"Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya."

Pada zaman Kepler, klaim diatas adalah radikal. Kepercayaan yang berlaku (terutama yang berbasis teori epicycle) adalah bahwa orbit harus didasari lingkaran sempurna. Pengamatan ini sangat penting pada saat itu karena mendukung pandangan alam semesta menurut Kopernikus. Ini tidak berarti ia kehilangan relevansi dalam konteks yang lebih modern.

Meski secara teknis elips yang tidak sama dengan lingkaran, tetapi sebagian besar planet planet mengikuti orbit yang bereksentrisitas rendah, jadi secara kasar bisa dibilang mengaproximasi lingkaran. Jadi, kalau ditilik dari observasi jalan edaran planet, tidak jelas kalau orbit sebuah planet adalah elips. Namun, dari bukti perhitungan Kepler, orbit orbit itu adalah elips, yang juga memeperbolehkan benda-benda angkasa yang jauh dari matahari untuk memiliki orbit elips. Benda-benda angkasa ini tentunya sudah banyak dicatat oleh ahli astronomi, seperti komet dan asteroid. Sebagai contoh Pluto, yang diobservasi pada akhir tahun 1930, terutama terlambat diketemukan karena bentuk orbitnya yang sangat elipse dan kecil ukurannya.

[sunting] Hukum Kedua

Figure 3: Illustrasi hukum Kepler kedua. Bahwa Planet bergerak lebih cepat didekat matahari dan lambat dijarak yang jauh. Sehingga jumlah area adalah sama pada jangka waktu tertentu.
"Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."

Secara matematis:

\frac{d}{dt}(\frac{1}{2}r^2 \dot\theta) = 0

dimana \frac{1}{2}r^2 \dot\theta adalah "areal velocity".

[sunting] Hukum Ketiga

Planet yang terletak jauh dari matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepelr ketiga menjabarkan hal tersebut secara kuantitativ.


"Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."

Secara matematis:

 {P^2} \propto  {a^3}

dimana P adalah period orbit planet dan a adalah axis semimajor orbitnya.

Konstant proporsionalitasnya adalah semua sama untuk planet yang mengedar matahari.

\frac{P_{\rm planet}^2}{a_{\rm planet}^3} = \frac{P_{\rm earth}^2}{a_{\rm earth}^3}.

GAYA GRAVITASI

Gravitasi adalah gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta. Fisika modern mendeskripsikan gravitasi menggunakan Teori Relativitas Umum dari Einstein, namun hukum gravitasi universal Newton yang lebih sederhana merupakan hampiran yang cukup akurat dalam kebanyakan kasus.

Sebagai contoh, Bumi yang memiliki massa yang sangat besar menghasilkan gaya gravitasi yang sangat besar untuk menarik benda-benda disekitarnya, termasuk makhluk hidup, dan benda benda yang ada di bumi. Gaya gravitasi ini juga menarik benda-benda yang ada diluar angkasa, seperti bulan, meteor, dan benda angkasa laiinnya, termasuk satelite buatan manusia.

Beberapa teori yang belum dapat dibuktikan menyebutkan bahwa gaya gravitasi timbul karena adanya partikel gravitron dalam setiap atom.Hukum Gravitasi Universal Newton

Hukum gravitasi universal Newton dirumuskan sebagai berikut:

Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.
F = G \frac{m_1 m_2}{r^2}
F adalah besar dari gaya gravitasi antara kedua massa titik tersebut
G adalah konstanta gravitasi
m1 adalah besar massa titik pertama
m2 adalah besar massa titik kedua
r adalah jarak antara kedua massa titik

Dalam sistem Internasional, F diukur dalam newton (N), m1 dan m2 dalam kilograms (kg), rmeter (m), dsn konstanta G kira-kira sama dengan 6,67 × 10−11 N m2 kg−2. dalam

Dari persamaan ini dapat diturunkan persamaan untuk menghitung Berat. Berat suatu benda adalah hasil kali massa benda tersebut dengan percepatan gravitasi bumi. Persamaan tersebut dapat dituliskan sebagai berikut: W = mg. W adalah gaya berat benda tersebut, m adalah massa dan g adalah percepatan gravitasi. Percepatan gravitasi ini berbeda-beda dari satu tempat ke tempat lain.

TURUNAN DAN INTERGRAL

Turunan dan integral

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.

\int \omega\ dt = \theta \ \ \leftrightarrow\ \ \omega = \frac{d\theta}{dt}
\int \alpha\ dt = \omega \ \ \leftrightarrow\ \ \alpha = \frac{d\omega}{dt}
\int \int \alpha\ dt^2 = \theta \ \ \leftrightarrow\ \ \alpha = \frac{d^2\theta}{dt^2}

Hubungan antar besaran sudut dan tangensial

Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui R\! khusus untuk komponen tangensial, yaitu

\theta = \frac{r_T}{R}\ \ , \ \ \omega = \frac{v_T}{R}\ \ , \ \ \alpha = \frac{a_T}{R}

Perhatikan bahwa di sini digunakan r_T\! yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu

r_T \approx |\overrightarrow{r}(t+\Delta t)-\overrightarrow{r}(t)|\!

untuk suatu selang waktu kecil atau sudut yang sempit.

GERAK ROTASI

GERAK MELINGKAR BERATURAN
Ketika sebuah benda bergerak membentuk suatu lingkaran dengan laju tetap maka benda tersebut dikatakan melakukan gerak melingkar beraturan alias GMB.Pada gerak melingkar beraturan, besar kecepatan linear v tetap, karenanya besar kecepatan sudut juga tetap.percepatan sudut dalam GMB bernilai nol, maka percepatan linear juga bernilai nol

GERAK MELINGKAR BERUBAH BERATURAN

Adalah gerak suatu benda dengan bentuk lintasan melingkar dan besar percepatan sudut/anguler (α) konstan.
Jika perecepatan anguler benda searah dengan perubahan kecepatan anguler maka perputaran benda semakin cepat, dan dikatakan GMBB dipercepat. Sebaliknya jika percepatan anguler berlawanan arah dengan perubahan kecepatan anguler benda akan semakin lambat, dan dikatakan GMBB diperlambat.

Besaran dalam gerak melingkar :


( T = periode f = frekuensi)
Selang waktu partikel untuk menempuh satu putaran adalah T. Sedangkan dalam satu putaran, sudut pusat yang ditempuh partikel adalah 360° atau 2 rad.


dimana

ω = kecepatan sudut (rad/s)

= 3,14


Maka didapat laju linear (V) adalah :

dimana

R = jari-jari lingkaran (m) , T = periode (s)
V = kelajuan linear (ms-1) , f = frekuensi (Hz)



PERSAMAAN GERAK

Gerak Translasi (gerak lurus)
Benda akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.

Gerak Lurus Beraturan (GLB)
diartikan sebagai gerakan pada lintasan lurus dengan kecepatan tetap/konstan. Kecepatan tetap berarti percepatan nol. Dengan kata lain benda yang bergerak lurus beraturan tidak memiliki percepatan. Dalam kehidupan sehari-hari sangat jarang ditemukan benda-benda yang bergerak pada lintasan lurus dengan kecepatan tetap.

Gerak Lurus Berubah Beraturan (GLBB)
adalah gerak lurus pada arah mendatar dengan kecepatan v yang berubah setiap saat karena adanya percepatan yang tetap. Dengan kata lain benda yang melakukan gerak dari keadaan diam atau mulai dengan kecepatan awal akan berubah kecepatannya karena ada percepatan (a= +) atau perlambatan (a= -).